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Joint Semantic-Geometric Learning for Polygonal Building Segmentation
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Polygonal Building segmentation Multi-task segmentation network Results of vertex prediction and ablation study
A fundamental task for disaster management, urban * Building footprint segmentation, multi-class corner prediction, and edge orientation prediction. * For vertex prediction results, our method achieves the
planning, geographical information updating, etc. * Formulated as pixel-wise classification problems and trained jointly with the cross entropy loss. F1-score gain of 6.64% and 6.82% compared with ASIP.
The pixel-wise segmentation methods in most studies Vertex generation module (VGM) * Our method produces more accurate polygon vertices in
produce building extraction results in raster format. * The initial vertex set is obtained by densely extracting each pixel from the segmentation contour. terms of locations, quantities, angles, etc.
*Polygonal building segmentation approaches produce * The corner and edge orientation criterions are designed for selecting a set of valid vertices. * The VGM produces better Fl-score compared with the
more realistic building polygons in the desirable vector Polygon refinement network (PRN) Baseline via filtering out the invalid vertices.
format for practical applications. * GGNN-based model utilizes extra information e.g., the feature of each vertex and their relations. * The PRN further improves the vertex Fl-scores by

* Predicting a displacement for each vertex to produce the final result with more accurate vertices. adjusting the vertices to more accurate locations.

Limitations of the existing methods
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Qualitative comparison of ASIP (top) and our method (bottom)
= = I'H Pwe ' '

it -
ﬂiﬂ% o
e e

\ -

ResNet Vertex
Backbone Embedding

[OR—

Vector vs. Raster format
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Our proposed approach

A multi-task segmentation network for joint semantic
and geometric learning via three relevant tasks.

*A rule-based vertex generation module to bridge the gap
between the image and the graph based network.

*A polygon refinement network to automatically move
the polygon vertices into more accurate locations.

Experimental result evaluation on building segmentation
* Evaluated on two popular datasets: (1) The CrowdAl mapping challenge dataset; (2) The Vegas
dataset of the SpaceNet building dataset.

* For building segmentation results, our method improves the Fl-score of current state-of-the-art
by 1.5%, 0.4%, and 2.1% under different loU thresholds.

'Ger.1erat|ng bwlglmg polygons with .a flexible quantity of Method AP AP AP | AR AR AR~ | F1  Fl:g Fl-
vertices that are in a proper sequential order. Mask-RCNN (He et al. 2017) | 419 675 488 | 47.6 70.8 555 | 446 69.1 51.9
PANet (Liu et al. 2018) 50.7 739 626 | 544 745 652 | 525 742 639

PolyMapper (Li et al. 2019) 557 860 651 |621 886 714 | 587 873 68.1

FrameField (Girard et al. 2020) | 50.5 76.6 59.3 | 55.3 78.1 64.0 | 528 77.3 61.6

ASIP (Li et al. 2020) 658 876 734 | 787 943 86.1 | 71.7 90.8 79.2

Ours 73.8 920 819 | 726 90.5 80.7 | 73.2 91.2 81.3

Baseline




