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Figure 1. An overview of our proposed OmniCity dataset. The satellite and street-level images of our dataset are collected in the six
selected regions. The black dots along the streets denote the viewpoint locations and the land-lot colors indicate different fine-grained
categories provided by the existing label maps. Note that all the images in the right part correspond to the same geo-location, and the
intrinsic transformation relation between the satellite and street-level panorama view is demonstrated in the middle part.

Abstract

This paper presents OmniCity, a new dataset for omnipo-
tent city understanding from multi-level and multi-view im-
ages. More precisely, OmniCity contains multi-view satel-
lite images as well as street-level panorama and mono-
view images, constituting over 100K pixel-wise annotated
images that are well-aligned and collected from 25K geo-
locations in New York City. To alleviate the substantial
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pixel-wise annotation efforts, we propose an efficient street-
view image annotation pipeline that leverages the exist-
ing label maps of satellite view and the transformation re-
lations between different views (satellite, panorama, and
mono-view). With the new OmniCity dataset, we pro-
vide benchmarks for a variety of tasks including build-
ing footprint extraction, height estimation, and building
plane/instance/fine-grained segmentation. Compared with
existing multi-level and multi-view benchmarks, OmniCity
contains a larger number of images with richer annota-
tion types and more views, provides more benchmark results

1



of state-of-the-art models, and introduces a new task for
fine-grained building instance segmentation on street-level
panorama images. Moreover, OmniCity provides new prob-
lem settings for existing tasks, such as cross-view image
matching, synthesis, segmentation, detection, etc., and fa-
cilitates the developing of new methods for large-scale city
understanding, reconstruction, and simulation. The Om-
niCity dataset as well as the benchmarks will be released at
https://city-super.github.io/omnicity/.

1. Introduction
Owning over a half global population and contribut-

ing the most economic growth, the city areas have been
recorded and characterized by various data sources includ-
ing satellite and aerial imagery, street-level imagery, LiDAR
data, public maps, crowd-sourced data, etc. A great num-
ber of benchmarks have been proposed towards facilitating
different vision tasks in city scene, of which the street-level
imagery has been broadly used in multiple driving-related
benchmarks [4, 10, 14, 18, 26, 31, 43]. The rich visual in-
formation of street-level imagery also enables complicated
visual recognition tasks on specific categories, such as per-
son detection [3], vehicle tracking and re-identification [32],
and fine-grained land use classification [49].

Nevertheless, constructing pixel-wise annotations for
street-level imagery requires substantial human efforts, re-
sulting in the small image quantity and limited view types
of existing datasets, especially for the street-view panorama
datasets with only hundreds of annotated images [36, 41,
42]. Regarding the annotation categories and levels, exist-
ing datasets mostly provide instance-level annotations for
dynamic object categories in driving scenes. As a vital
component for city understanding, the static objects such as
buildings and roads take up a larger proportion of cities and
remain a high consistency across the satellite and ground-
level images. However, existing street-level datasets ei-
ther provide pixel-wise building annotations without fine-
grained semantic labels [4, 10, 14, 47] or provide fine-
grained annotations at only bbox or image level [46, 49].

Compared with street-level images, remote sensing im-
ages usually contain less visual information for conduct-
ing complicated tasks such as fine-grained land use seg-
mentation and building function recognition. On the other
hand, unlike the sparsely-distributed street-level images, re-
mote sensing images have a dense spatial distribution and a
worldwide coverage, which are well aligned with the open
maps and government datasets at pixel level [22]. These ex-
isting maps and datasets contain a variety of satellite-level
annotations for buildings (such as the footprint, land use,
height, year built), roads (category and line coordinates),
and other geographical objects, providing new perspectives
for promoting novel city understanding datasets and tasks.

In this work, as illustrated in Figure 1, we construct an
omnipotent city dataset unifying data sources from both
satellite and street views, linked by geo-locations and ur-
ban planning data. Unlike existing city datasets that only
support a limited number of tasks, OmniCity dataset incor-
porate rich geometric annotations and semantic meta data
for each image, where multiple tasks can be conducted
on. To leverage the existing map labels and the rich visual
context from the street-level imagery, we propose an effi-
cient pipeline for producing diverse street-level annotations.
Based on this annotation pipeline, we built OmniCity, a
dataset that contains over 100K annotated images collected
from 25K geo-locations in New York City. We provide
benchmark results on OmniCity for a variety of tasks, in-
cluding building footprint extraction and height estimation
on satellite images, as well as fine-grained/instance/plane
segmentation of buildings on street-level panorama and
mono-view images. To the best of our knowledge, this is
the first work that involves fine-grained building instance
segmentation on street-level panorama images. We also an-
alyze the potential of OmniCity for promoting new tasks
and methods with multi-level imagery.

Our main contributions are summarized as follows:

• We propose a novel pipeline for efficiently pro-
ducing diverse pixel-wise annotations on street-level
panorama and mono-view images.

• We build the OmniCity dataset, which contains well-
aligned satellite and street-level images with a larger
quantity, richer annotations and more views compared
with existing datasets.

• We provide a series of benchmark experimental results
for multiple tasks and data sources, and analyze the
limitations of the current benchmarks on OmniCity.

• We discuss the potential of OmniCity for facilitating
new methods and tasks for large-scale city understand-
ing, reconstruction, and simulation.

2. Related work
2.1. Datasets and methods for street-level tasks

As shown in Table 1, many street-level datasets have
been proposed over the past few years. A large propor-
tion of these datasets are designed for visual tasks in driving
scene [4, 10, 14, 18, 26, 31, 44], such as 2D/3D object detec-
tion, semantic segmentation, object tracking, etc. Several
street-level datasets are proposed for a specific object cate-
gory, such as the EuroCity Persons dataset [3], the CityFlow
dataset [32] for vehicle tracking and re-identification, etc.
In addition to the above datasets containing only mono-
view images, some studies propose new datasets or methods
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Table 1. A comparison of OmniCity with existing city-related
datasets of street-level, satellite-level and cross-level. The Street
and Satellite (Sate.) columns show the available image view types.
The last three columns indicate which level of tasks the dataset
is designed for (semantic/instance/plane segmentation, object de-
tection (bbox), and image classification), and whether the dataset
contains fine-grained building attribute (Attri.) or height labels.

Dataset #Images Street Sate. Anno. Attri. Height

KITTI [14] 15,000 mono - semantic × ×
Cityscapes [10] 25,000 mono - semantic × ×

EuroCity [3] 47,300 mono - bbox × ×
WildPASS [42] 500 multi. - semantic × ×

PASS [41] 400 multi. - semantic × ×
HoliCity [47] 6,300 multi. - inst./plane × ×
SkyScapes [1] 8,820 - single semantic × ×
SpaceNet [38] 60,000 - multi. instance × ×

Christie et al. [9] 11,000 - single semantic × ✓
Li et al. [21] 3,300 - single instance × ✓

TorontoCity [36] Unknow multi. multi. instance × ✓
Wojna et al. [39] 49,426 mono single image ✓ ×

OmniCity 108,600 multi. multi. inst./plane ✓ ✓

for semantic segmentation from panorama images, such as
TorontoCity [36], PASS [41], and WildPASS [42]. How-
ever, such datasets require expensive annotation efforts and
contains only hundreds of pixel-wise annotated panorama
images in total. Besides the driving-related datasets, several
recent studies target at the recognition tasks for static object
categories. Zhu et al. [49] proposed a framework for fine-
grained land use classification task using ground-level im-
ages. Zhang et al. [46] proposed a building recognition sys-
tem for detecting their business entity information. HoliC-
ity [47] proposed holistic 3D structure annotations gener-
ated from CAD models for panorama images, but it only
conducted experiments on mono-view images and lacked
the semantic information of buildings and roads.

In summary, existing street-level datasets still have the
following limitations. Regarding the image quantity and
view types, most existing datasets require substantial an-
notation efforts and contain only a limited number of an-
notated images of a mono view. The image quantity of
panorama datasets is even several orders of magnitude
smaller than mono-view datasets. Regarding the annotation
categories and levels, existing datasets mainly focus on dy-
namic or driving-related categories and lack in fine-grained
annotations of an object category. Moreover, the datasets
for static objects are lacking in pixel-level or fine-grained
annotations. By contrast, our OmniCity contains over 100K
satellite and street-level images of multiple views as well
as the pixel-wise and fine-grained annotations, demonstrat-
ing superiority in annotation quantity, annotation type, and
view type compared with existing datasets.

2.2. Datasets and methods for satellite-level tasks

As a data source with a long time series and a large
coverage, the satellite imagery has been broadly explored

for large-scale city understanding. Unlike the street-level
datasets requiring manual annotations, the satellite imagery
is already well aligned with existing label maps [20]. The
OpenStreetMap (OSM) is one of the most broadly-used
map data, which contains publicly available annotations of
building footprints, heights, roads, land use, etc., of world
wide. In addition, many public datasets provide rich infor-
mation at a local scale. For example, the PLUTO 1 dataset
contains the block and lot information of the whole New
York City, and each lot is associated with the land use,
year built, number of floors, and other useful information.
The Microsoft US building footprint dataset contains over
a hundred million computer-generated building footprints.
Several challenges provide manually labeled building foot-
prints and the corresponding satellite images [11, 34, 38].
Moreover, some datasets provide fine-grained semantic cat-
egories of different objects [1] or building height annota-
tions for 3D reconstruction tasks [9, 21].

In summary, existing maps and datasets have provided
substantial semantic and geometric information that is well
aligned with the satellite imagery. In this work, we lever-
age these rich annotations and the transformation relations
between different views to produce auxiliary information
for street-level image annotation. Compared with existing
work, OmniCity significantly reduces the human labeling
efforts and provides more annotation types to enable om-
nipotent city understanding via multiple tasks and views.

2.3. Datasets and methods for multi-level tasks

The ground-level images usually contain rich visual con-
text that is not visible from the satellite or aerial imagery
(e.g. building facade, the side of vegetations, etc.), while
the spatial distribution is often sparse and unbalanced in
different areas. By contrast, the remote sensing images
have a much denser spatial distribution at a global scale,
but the visual context is too limited to support complicated
fine-grained tasks. Considering the above complementary
characteristics, many datasets and methods have been pro-
posed for cross-view scenarios. Cross-view visual recogni-
tion tasks integrate the two data types as the model input for
predicting building functions, building ages, land use, tree
species, etc. [2, 12, 37, 40], while cross-view image match-
ing [17,28,33,48] and image synthesis [25,27,30,45] tasks
take only one data type as the model input.

In addition, several datasets are proposed for a variety of
satellite and street-level tasks. The TorontoCity [36] con-
tains a wide range of annotations including building height
estimation, building instance segmentation, building foot-
print segmentation, road segmentation, etc., which are con-
ducted on either satellite or street-level images and only
adopt FCN and some CNN classification architectures as

1https://data.cityofnewyork.us/City-Government/
Primary-Land-Use-Tax-Lot-Output-PLUTO-/64uk-42ks.
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Figure 2. The annotation tool of OmniCity dataset. The left and right images show examples of one road scene with the label map (in the
bottom-right window) displayed in land use mode, and crossroads scene with the label map in block-lot mode, respectively.

the baseline models for all experiments. In a recent study
[39], a holistic multi-view building analysis dataset is de-
signed for multiple recognition tasks regarding facade ma-
terial, number of floors, occupancy type, roof geometry,
roof pitch, and construction type. The dataset contains only
image-wise annotations for street-level classification tasks.
The semantic categories of each building are decided by hu-
man annotators, resulting in more challenges and subjectiv-
ity to the annotation process compared with our work.

In summary, for the existing cross-view studies designed
for one specific task, the street-level images are not anno-
tated and only supplement extra features to the satellite-
level feature maps. By contrast, our OmniCity provides rich
annotation types that are not contained in existing datasets,
e.g. the pixel-wise building instances and fine-grained cate-
gories on street-level images, which can promote new meth-
ods to explore and leverage these annotations to improve the
performance. In addition, OmniCity provides the bench-
mark experimental results of each task using more state-
of-the-art models. With our efficient annotation pipeline, it
also provides additional fine-grained pixel-wise annotations
and benchmark results compared with [36] and [39].

3. Datasets

In this work, we aim at building a dataset for omnipotent
city understanding from multi-level and multi-view images.
Our proposed OmniCity dataset contains 108,600 images of
multiple views, which are collected from 25K geo-locations
in New York City. Compared with existing datasets, Om-
niCity requires much fewer human efforts for street-level
image annotation, contains more diverse annotation types
for both 2D and 3D tasks, provides richer building seman-
tics at instance segmentation level, and possesses higher
scalability for new annotation type supplement and expan-
sion to other cities. The details of data collection, annota-
tion, and statistics are introduced as follows.

3.1. Data collection

As shown in Figure 1, our OmniCity dataset is col-
lected from six selected regions of New York. We down-
load the panorama images in the six selected regions us-
ing google street view download 360, with a step distance
of 65 meters. The regions for collecting the training and
test samples are denoted by red and blue, respectively. We
save the geographic coordinates, collection time, panorama
id, north rotation, and zoom level for each panorama im-
age. For each panorama site, we collect its correspond-
ing google earth images of three acquisition dates according
to the geographic coordinates, constituting three groups of
satellite-level datasets with three cases of off-nadir view an-
gles (small/medium/high, denoted by V1/V2/V3). For the
annotation data sources, we collect the meta information
from PLUTO and OpenStreetMap (OSM). The New York
City is hierarchically formed by blocks, lots, and buildings.
Each building can be identified by a specific block-lot id. In
PLUTO, each lot (building) is associated with rich informa-
tion, e.g. land use, year built, number of floors, etc. The
OSM data contains footprint and height information while
lacking in land use information for most buildings. Consid-
ering the characteristics of the two data sources, we align
the land use attribute (from PLUTO) with the building foot-
print and height (from OSM) using the geographical coor-
dinates. Overall, each building is assigned with a block-lot
id, a land use category, a height value, and the geographical
coordinates of a footprint polygon, which will be used as
the reference label maps for panorama image annotation.

3.2. Data annotation

Figure 2 shows the panorama image annotation tool pro-
posed in our study. The street-level panorama and satellite
images are naturally well-aligned at image-level between
the central coordinates from satellite views and the camera
pose of panorama views. The instance-level annotations of
different views (e.g., building facade and footprint) are fur-
ther aligned during the annotation process. According to the
geo-transformation relation between different views [25],
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we calculate the angle between the north (upward) direction
and each building footprint (in the satellite image), and the
angle between the north direction (saved in the panorama
file) and each building facade in the horizontal axis. The
footprint and facade with the same angle value are aligned
to the same building, providing the auxiliary information
for the manual annotation process.

The annotation pipeline includes four stages: (1) Image
selection, i.e., select the panorama images that are essen-
tial to be annotated according to building coverage, occlu-
sion extent, etc; (2) Segmentation annotation, i.e., adjust
the floor/top line to fit the bottom/roof of each building, and
add the boundary split line considering both auxiliary infor-
mation and building appearance (e.g. texture discrepancy,
doors, etc.); (3) Attribute assignment, i.e., add the attributes
(instance ID, block-lot id and land use type) for each build-
ing plane; (4) Quality assessment, i.e., check the annotation
quality and remove the unqualified images.

In addition, the mono-view images and annotations are
automatically generated from those of the panorama images
via view transformation. For each panorama image, we se-
lect three views using three x-axis angles (-170, 10 and 170,
in the range of [-180, 180]) and a fixed y-axis angle of 0.
Then we design an image selection rule to filter out the un-
expected images of which the buildings are distributed in
only one side, building area proportion is smaller than 10%,
or the building plane quantity is smaller than 2. The remain-
ing images constitute the final mono-view dataset of our ex-
periments. For satellite-level tasks, the annotations are al-
ready well-aligned with the meta information from PLUTO
and OSM. Each building footprint on a satellite image is
assigned with a block-lot id, a land use category, a height
value, and the pixel coordinates of the footprint polygon.

3.3. Statistics of the proposed dataset

The whole dataset contains three sub-datasets (in small,
medium and large view angles) for satellite-level tasks
and two sub-datasets (in panorama and mono views) for
street-level tasks. For satellite-level datasets, the three sub-
datasets of images collected from the 25K geo-locations
constitute 75K images in total, which are cropped by 512
× 512 pixels according to the coverage area of the cor-
responding panorama image. For the street-level datasets,
the panorama dataset contains 18K images in 512 × 1024
pixels, which are selected from the initial 25K panorama
images during the image selection and quality assessment
phases. Similarly, the mono-view dataset obtained via view
transformation and image selection contains 156,00 mono-
view images in 512 × 512 pixels. The ratio of train/test
splits is set as 4:1 for all five sub-datasets. In OmniCity
dataset, the initial land use categories of PLUTO with sim-
ilar characteristics and low quantities are merged into one
category, resulting in 7 land use categories in total. The

categories of 1/2 family building (∼17%), walk-up building
(∼23%) and the mixed residential/commercial building cat-
egories (∼29%) take up a larger proportion compared with
the other four categories, i.e., elevator buildings (∼7%),
office buildings (∼10%), industrial/transportation/utility
buildings (∼11%) and others (∼1%). For the distribution
of building height, most are between 1 and 25 meters while
a small percentage (∼1%) reaches over 50 meters.

4. Benchmark results

In this section, we provide a variety of benchmarks for
multiple satellite and street-level tasks. The satellite-level
tasks in our experiments include building footprint segmen-
tation and height estimation. For both tasks, we conduct
experiments on the satellite images with three view angles.
For the street-level tasks, we conduct two instance segmen-
tation tasks (i.e., land use and building instance segmenta-
tion) on the panorama images, and three instance segmenta-
tion tasks (i.e., land use / building instance / plane segmen-
tation) on mono-view images. Please note that these are
only preliminary experimental results on OmniCity dataset.
More benchmarks of latest models and additional tasks will
be continuously updated on OmniCity homepage.

4.1. Experimental setting

The experiments are mainly based on mmdetection [7]
with the recommended hyper-parameter settings. We select
Mask R-CNN [15] as the baseline method for segmentation
tasks, and provide a comparison of different methods in Ta-
ble 6, including Mask Scoring R-CNN (MS R-CNN) [19],
Cascade Mask R-CNN (Cascade) [5], Content-Aware Re-
Assembly of FEatures (CARAFE) [35], and Hybrid Task
Cascade (HTC) [6]. Specifically, we use ResNet-50 [16]
with FPN [23] pre-trained on the ImageNet [29] as the back-
bone for all instance segmentation models. All models are
trained on 8 NVIDIA Tesla V100 GPUs for 12 epochs, with
a batch size of 16, a learning rate starting from 0.02 and
decreasing by a factor of 0.1 from the 8th to 11th epoch,
and the stochastic gradient descent (SGD) optimizer with
a weight decay of 10−4 and a momentum of 0.9. For the
height estimation task, we evaluate the performance of two
widely-used monocular depth estimation methods on the
satellite images of three view angles, i.e. Structure-Aware
Residual Pyramid Network (SARPN) [8] and Deep Ordi-
nal Regression Network (DORN) [13], which are trained
on 4 NVIDIA Tesla V100 GPUs for 20 epochs. SARPN is
trained with a batch size of 8, a learning rate starting from
10−4 and reduced by 10% every 5 epochs, and the Adam
optimizer with β1 = 0.9, β2 = 0.999, and a weight decay of
10−4. DORN is trained with a batch size of 4, a base learn-
ing rate of 10−4 and the power of 0.9, using SGD optimizer
with a weight decay of 0.0005 and a momentum of 0.9.
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Figure 3. Qualitative results of satellite-level tasks. The yel-
low/cyan/red polygons denote TP/FP/FN buildings.

4.2. Experimental results of satellite-level tasks

Table 2 shows the baseline results of the satellite-level
instance segmentation task, which are evaluated using both
COCO [24] and SpaceNet [11] evaluation metrics. The
footprint segmentation performance is the best for satellite
images with a small view angle, and deteriorates seriously
when the view angle gets larger. For all three cases, the
prediction score is the highest for buildings with large ar-
eas and the lowest for small buildings. Figure 3 provides
a qualitative comparison of the footprint segmentation re-
sults on satellite images of three types of view angle. The
large view angle results in great difficulties for extracting
accurate footprint boundaries, due to the partial invisibility
of building footprint, the serious shadow effects, etc. The
height estimation performance is evaluated in terms of the
mean absolute error (denoted by MAE), mean square error
(denoted by MSE), and root mean square error (denoted by
RMSE), which are commonly used metrics for depth esti-
mation. All metrics are measured in meters at pixel level.
Table 3 and Figure 3 show the height estimation results ob-
tained from DORN [13] and SARPN [8] for satellite im-
ages with different view angles. Results demonstrate that
DORN obtains better results compared with SARPN for all
three cases. Both methods achieve the best performance
for satellite images with a medium view angle (V2) com-
pared with the other two cases. The footprint and roof have
more overlaps and provide less building structure informa-
tion for satellite images with a small view angle, while the
the shadow and parallax effect become more serious with

Table 2. Quantitative results of instance segmentation for satellite
images with different view angles.

View Metrics of various thresholds threshold = 0.5
AP AP50 AP75 APS APM APL P R F1

V1 29.7 66.0 23.5 15.9 33.9 36.7 76.9 66.3 71.2
V2 23.7 56.6 16.1 11.5 27.2 30.3 73.9 55.0 63.1
V3 18.9 51.4 9.6 9.1 21.5 25.3 70.7 51.7 59.7

Table 3. Quantitative results of height estimation for satellite im-
ages with different view angles.

View SARPN [8] DORN [13]
MAE MSE RMSE MAE MSE RMSE

V1 16.18 870.34 29.50 12.71 670.52 25.89
V2 13.75 694.17 26.35 12.24 628.06 25.06
V3 15.32 823.01 28.69 13.40 730.67 27.03

the increase of off-nadir view angle. The above aspects
result in challenges for the accurate estimation of building
height for satellite images with small and large view angles.

4.3. Experimental results of street-level tasks

We analyze the performance of multiple segmentation
tasks on street-level panorama and mono-view images.
Table 4 and Figure 4 show the experimental results of
panorama-view images on two segmentation tasks, of which
the performance on building instance segmentation task
(denoted by Instance Seg.) is significantly superior to the
fine-grained land use segmentation task (denoted by Lan-
duse Seg.). Table 5 and Figure 5 show the experimental re-
sults of mono-view images on three different tasks, i.e., lan-
duse segmentation, instance segmentation, and plane seg-
mentation. Similar to the results of panorama-view images,
the baseline method achieves much higher scores for the
two binary segmentation tasks (plane and instance segmen-
tation) compared with the fine-grained land use segmenta-
tion task. The qualitative results also demonstrate that the
baseline method has difficulties in identifying the accurate
land use type of some building instances.

Table 6 shows the land use segmentation results ob-
tained from the five methods on street-level panorama im-
ages. HTC achieves the best performance for both overall
and category metrics followed by MS R-CNN, which in-
dicates that the cascade structure and mask scoring strat-
egy can effectively improves the fine-grained segmentation
performance of building instances. From the metrics of
each category, we can find that C2, C4 and C5 (i.e., Walk-
up Buildings, Mixed Residential/Commercial, and Office
Buildings) have better performance compared with C1, C3
and C6 (i.e., 1/2 Family Buildings, Elevator Buildings and
Industrial/Transportation/Utility) for all methods, with the
AP ranging from 20% to 40%. The category of Others has
an extremely low AP score due to the small sample quantity.
Compared with the residential buildings, the mixed Resi-
dential/Commercial and Office buildings have more special
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Land Use - Ground Truth Land Use Segmentation

1/2 Family Buildings Walk-Up Buildings Elevator Buildings Mixed Residential / Commercial Office Buildings Industrial / Transportation / Utility Others

Figure 4. Qualitative results of street-level tasks (i.e., instance seg-
mentation and land use segmentation) on panorama images.

Table 4. Quantitative results on street-level panorama images.

Task AP AP50 AP75 APS APM APL

Landuse Seg. 26.0 34.7 28.5 0.3 12.0 30.4
Instance Seg. 66.7 86.5 72.5 1.7 40.2 74.1

Table 5. Quantitative results on street-level mono-view images.

Task AP AP50 AP75 APS APM APL

Landuse Seg. 23.9 32.1 26.7 0.3 10.6 27.5
Instance Seg. 68.3 88.8 73.8 3.2 33.3 76.1

Plane Seg. 65.1 87.4 71.0 5.0 40.7 73.8

characteristics (i.e. the boundary between first and above
floors, facade design, and building structure), contributing
to the superior AP scores of these two categories. The per-
formance of the above six categories is also concordant with
the ratio of the sample quantity.

4.4. Results analysis and discussions

In this section we summarize the limitations of existing
methods for satellite and street-level tasks on our OmniC-
ity dataset. For building footprint segmentation, the per-
formance of existing methods get worse with the increas-
ing of off-nadir view angle, which might due to the serious
parallax and shadow effect on the satellite images with a
large off-nadir view angle. For the height estimation task,
most existing methods directly apply the monocular depth
estimation methods to remote sensing scene. These meth-
ods usually produce poor results on the invisible side of
the footprint boundary especially for high-rise buildings on
very off-nadir images. In addition, most existing methods
use deep neural networks to regress continuous values but
the actual height values are discrete for building and non-
building areas, resulting in difficulties for network training
and extra efforts for converting the continuous prediction
values into discrete height values via post-processing.

Land Use - Ground truth Land Use Segmentation Instance Segmentation Plane Segmentation

1/2 Family Buildings Walk-Up Buildings Elevator Buildings Mixed Residential / Commercial Office Buildings Industrial / Transportation / Utility Others

Figure 5. Qualitative results of street-level tasks (i.e., land use
/instance/plane segmentation) on mono-view images.

For the street-level tasks based on panorama images, ex-
isting methods target at general instance segmentation tasks
for commonly-used datasets, e.g. COCO [24], CityScapes
[10], BDD100K [44], etc. These datasets often have a sin-
gle view and a narrow Field of View (FoV). However, for
panorama images, the special properties such as the wide
FoV covering full 360-degree in the horizontal direction,
are not taken into consideration in the design of existing
methods. For both mono-view and panorama images, exist-
ing methods have difficulties in accurately recognizing the
building instance with a small area (e.g. buildings located
in the side of the main parts), the land use categories with a
small number of building instances, and the categories that
are easily confused (e.g. 1/2 Family Buildings and Walk-
Up Buildings, Mixed Residential/Commercial and Office
Buildings). Figure 6 shows some typical failure cases of
the current benchmark methods. New instance segmenta-
tion methods should be designed for solving the above lim-
itations considering the characteristics of panorama images,
building instances, fine-grained categories, etc.

5. Potential of the OmniCity dataset
Our proposed OmniCity dataset demonstrates great po-

tential for facilitating city understanding, machine percep-
tion, and generative modeling researches in many aspects.

First, it can serve as a new dataset for the existing
tasks such as image geo-localization/synthesis and segmen-
tation/detection of buildings/trees/land use from cross-view
images. OmniCity provides additional annotations that are
not contained in existing datasets, e.g. the building in-
stances and fine-grained categories on street-level images,
which can promote new methods to explore and leverage

7



Table 6. Quantitative results of different methods for fine-grained land use segmentation on street-level panorama images.

Method
Overall Metrics Metrics of each category

AP AP50 AP75 APS APM APL C1 C2 C3 C4 C5 C6 C7
Mask R-CNN [15] 26.0 34.7 28.5 0.3 12.0 30.4 19.6 37.5 25.8 39.2 36.9 22.2 0.8
MS R-CNN [19] 27.1 35.8 29.8 0.1 12.4 31.5 22.5 39.1 26.2 40.8 38.0 21.7 1.2

Cascade [5] 25.9 33.8 28.3 0.2 11.4 30.5 20 38.3 25 38.5 36.7 22.1 0.3
CARAFE [35] 25.9 34.5 28.5 0.1 11.9 30.2 19.6 37.3 24.9 39.9 37.2 21.5 0.8

HTC [6] 27.2 35.7 29.9 0.3 12.4 32.0 20.8 38.7 27.2 39.9 38.4 24.5 1.2

the new annotations to improve the performance of these
tasks. The annotations are organized in a unified version,
which means multiple tasks can be performed on a single
image, and thus can well support the multi-task learning set-
ting. Additionally, since the building instances are directly
linked with the urban planning data using block-lot id, it is
easy to be enriched with more annotation types from other
urban datasets, especially those for social and urban studies.

Second, OmniCity provides a new application scenario
or problem setting to existing tasks. For line segment de-
tection and wireframe parsing tasks, existing datasets con-
tains densely distributed line segment and wireframe labels,
while our OmniCity focuses on the main line segments and
wireframes on the outlines instead of the inner ones, result-
ing in a much sparser format. The serious shelters from
the trees and vehicles also bring challenges to these tasks.
New line segment detection and wireframe parsing methods
should be designed for the OmniCity scenario.

Moreover, OmniCity facilitates new tasks for city re-
construction and simulation. Treating each panorama as a
unique city scene, a complete 3D model representing such a
local scene is available, as also shown in the second window
panel in our tool (Figure 2). These 3D models are stored in
abstract vector formats, with clean and clear vertices indi-
cating the building facades, streets, etc., which are suitable
for many shape generation tasks represented with graphs.

Finally, with the well-aligned satellite and street-level
images as well as the various annotation types, novel city
reconstruction tasks, e.g., 3D building reconstruction from
cross-view images, can be derived for producing holistic
3D buildings with both fine-grained semantic category and
precise geometry information (vector 3D model). Unlike
the existing studies that only target at 3D reconstruction
from monocular or multi-view remote sensing imagery, new
methods should be designed to leverage the additional infor-
mation from street-level images to improve 3D reconstruc-
tion and semantic prediction for OmniCity scenario.

6. Conclusion

In this paper, we have proposed OmniCity, a new dataset
for omnipotent city understanding from satellite and street-
level images of multiple views. The dataset contains over
100K images collected from 25K geo-locations in New

(a) GT: 5-Office (b) GT: 4-Mixed (three instances) (c) GT: 3-Elevator

(d) GT: 5-Office (e) GT: 5-Office (f) GT: 7-Others (g) GT: 1-Family

Figure 6. Typical failure cases of the current benchmark methods.

York City, of which the annotations are generated from both
existing label maps and our proposed annotation pipeline.
We provide benchmark experimental results for multiple
tasks and data sources based on state-of-the-art methods and
analyze their limitations. We believe that OmniCity will
not only promote new algorithms and application scenarios
for existing tasks, but facilitate novel tasks for 3D city re-
construction and simulation. In our future work, we will
keep updating the OmniCity dataset and the benchmarks
in the following aspects. Owing to the proposed annota-
tion pipeline and the unified annotations with a vector for-
mat and rich meta information (geo-locations, block-lot id,
etc.), OmniCity can be efficiently supplemented with more
properties of buildings and other geographical object types
(roads, sidewalks, trees, green space, etc.), and extended to
other cities of different countries. The benchmark results of
more state-of-the-art models and new tasks will be provided
accordingly. Based on the rich annotation and view types of
OmniCity, we also plan to develop new methods for existing
and novel tasks, such as object detection, instance segmen-
tation, and 3D reconstruction from cross-view images.
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